Reducing ryanodine receptor open probability as a means to abolish spontaneous Ca2+ release and increase Ca2+ transient amplitude in adult ventricular myocytes.
نویسندگان
چکیده
The aim of this work was to investigate whether it is possible to remove arrhythmogenic Ca2+ release from the sarcoplasmic reticulum that occurs in calcium overload without compromising normal systolic release. Exposure of rat ventricular myocytes to isoproterenol (1 micromol/L) resulted in an increased amplitude of the systolic Ca2+ transient and the appearance of waves of diastolic Ca2+ release. Application of tetracaine (25 to 50 micromol/L) decreased the frequency or abolished the diastolic Ca2+ release. This was accompanied by an increase in the amplitude of the systolic Ca2+ transient. Cellular Ca2+ flux balance was investigated by integrating Ca2+ entry (on the L-type Ca2+ current) and efflux (on Na-Ca2+ exchange). Isoproterenol increased Ca2+ influx but failed to increase Ca2+ efflux during systole (because of the abbreviation of the duration of the Ca2+ transient). To match this increased influx the bulk of Ca2+ efflux occurred via Na-Ca2+ exchange during a diastolic Ca2+ wave. Subsequent application of tetracaine increased systolic Ca2+ efflux and abolished the diastolic efflux. The increase of systolic efflux in tetracaine resulted from both increased amplitude and duration of the systolic Ca2+ transient. In the presence of isoproterenol, those Ca2+ transients preceded by diastolic release were smaller than those where no diastolic release had occurred. When tetracaine was added, the amplitude of the Ca2+ transient was similar to those in isoproterenol with no diastolic release and larger than those preceded by diastolic release. We conclude that tetracaine increases the amplitude of the systolic Ca2+ transient by removing the inhibitory effect of diastolic Ca2+ release.
منابع مشابه
Reducing Ryanodine Receptor Open Probability as a Means to Abolish Spontaneous Ca Release and Increase Ca Transient Amplitude in Adult Ventricular Myocytes
The aim of this work was to investigate whether it is possible to remove arrhythmogenic Ca release from the sarcoplasmic reticulum that occurs in calcium overload without compromising normal systolic release. Exposure of rat ventricular myocytes to isoproterenol (1 mol/L) resulted in an increased amplitude of the systolic Ca transient and the appearance of waves of diastolic Ca release. Applica...
متن کاملLeaky ryanodine receptors in the failing heart: the root of all evil?
Over the past two decades, a significant contribution to the pathophysiology of heart failure (HF) has been attributed to alterations of Ca2+ handling, which has been observed in myocytes isolated from failing hearts. Initially, a reduced Ca2+ transient amplitude due to a reduced Ca2+ reuptake rate by SERCA and enhanced extrusion of Ca2+ to the extracellular space by the Na+/Ca2+ exchanger had ...
متن کاملDepressed ryanodine receptor activity increases variability and duration of the systolic Ca2+ transient in rat ventricular myocytes.
Sarcoplasmic reticulum (SR) Ca2+ release, through the ryanodine receptor (RyR), is essential for the systolic Ca2+ transient and thus the cardiac contractile function. The aim of this study was to examine the effects on the spatial organization of the systolic Ca2+ transient of depressing RyR open probability (P(o)) with tetracaine or intracellular acidification. Voltage-clamped, fluo-3-loaded ...
متن کاملEffects of FK506 on [Ca2+]i differ in mouse and rabbit ventricular myocytes.
FK506 binding proteins (FKBPs 12 and 12.6) interact with ryanodine receptor (RyR) and modulate its functions. FK506 binds to and reverses effects of FKBP on RyR, thus increasing RyR sensitivity to Ca2+, decreasing RyR cooperativity, and increasing RyR open probability. FK506 would thus be expected to have an effect on excitation-contraction coupling, but which of these FK506 effects predominate...
متن کاملCellular and molecular mechanisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation.
BACKGROUND Electrical, structural, and Ca2+ -handling remodeling contribute to the perpetuation/progression of atrial fibrillation (AF). Recent evidence has suggested a role for spontaneous sarcoplasmic reticulum Ca2+ -release events in long-standing persistent AF, but the occurrence and mechanisms of sarcoplasmic reticulum Ca2+ -release events in paroxysmal AF (pAF) are unknown. METHOD AND R...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 98 10 شماره
صفحات -
تاریخ انتشار 2006